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Abstract

Canvas fingerprinting is an effective technique for implicitly re-
identifying visitors to a Web site based on subtle variations in the
graphical rendering of specific “test canvases”. Different finger-
printing actors make use of distinct canvases for this purpose and
thus, as we show, it is possible to “fingerprint the fingerprinters” by
grouping together identical canvases that are employed for these
tests. In this paper, we document the prevalence of canvas finger-
printing (finding that 12.7% of the top 20k sites engage in it), use
this grouping technique to measure and characterize the online
footprint of widely-used fingerprinting services, and finally analyze
the context in which these services are used to shine light on their
intended purpose.

CCS Concepts
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privacy→ Privacy protections.
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1 Introduction

Web browser fingerprinting is a technique where a site measures
inter-machine differences to probabilistically re-identify a user
across visits. Dating back to at least the 2010’s, researchers have
identified a broad range of distinguishing characteristics that can
be used together for effective fingerprinting, including both ex-
plicit features (e.g., HTTP headers) and implicit features (e.g., in-
stalled fonts, JavaScript and browser API implementation, and math
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functionality) [1, 14, 28]. However, among these, differences in ob-
ject rendering via the HTML <canvas> element [35] provides the
greatest discriminatory power [30] and consequently such canvas
fingerprinting is almost universally incorporated into production
fingerprinting schemes [1, 14, 28, 39].

Canvas fingerprinting relies on detailed, per-pixel differences in
how carefully crafted “test canvases” are rendered. In principle, a
single set of test canvases could be universally used. However, as we
will show, in practice the considerable flexibility afforded by canvas
rendering has led different fingerprinting services to innovate and
create distinct test canvases for their purposes. As a result, the very
choice of test canvas can be used as a “fingerprint” identifying the
particular fingerprinting script or service being employed.

In this paper, we further develop this observation via three pri-
mary contributions:

• Measuring canvas fingerprinting usage. We crawl two
groups of sites: a collection of “popular” sites (the top 20k
as ranked by Tranco [31]) and a sample of 20k “tail” sites
selected from the remainder of the top 1 million sites in
the same ranking. We describe a technique for identifying
potential “test canvases” by identifying Canvas API calls
and filtering those whose content is explicitly extracted in
JavaScript. Overall canvas fingerprinting is relatively modest,
found in 12.7% of popular and 9.9% of tail sites.

• Canvas clustering. By grouping together identical canvases
found across different sites, we document that a modest num-
ber (∼500) of distinct canvases dominate the landscape and
that these, in turn, correspond to particular fingerprinting
services and scripts.

• Describing fingerprinting context. Finally, we analyze
the context around the use of these different fingerprinting
services in the wild and how theymight relate to questions of
user privacy. This includes any public representation of their
operators, and how often such fingerprinting is employed
in an advertising or tracking context (i.e., and thus is more
likely to be used for cross-site re-identification purposes).
We similarly analyze and document the range of evasion and
cloaking techniques used to circumvent anti-fingerprinting
defenses in some modern browsers.

Our findings underscore the complexity of modern browser fin-
gerprinting in the wild, and provide a set of initial techniques for
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identifying and teasing apart how these capabilities are being used
in practice.

2 Background and related work

The HTML <canvas> element is a powerful feature in modern
Web development allowing for in-browser rendering support of
dynamic and scriptable graphics within a Web page. Developers
can use JavaScript to draw shapes, text, images and animations on
the canvas, making it a popular tool for interactive applications,
gaming, and data visualization.

However, the Canvas API can also be used for browser finger-
printing: first presented in 2012, canvas fingerprinting exploits
subtle differences in the rendering of the same text or WebGL scene
to track and identify users [35]. This mechanism does not require
user consent, and can be done invisibly and quickly on Web pages.

These variations in canvas rendering arise from differences in the
graphic cards, operating systems, display settings, browsers, and
installed fonts on different machines (e.g., how anti-aliasing and
sub-pixel smoothing is performed). To capture these differences, a
fingerprinter can craft a “test canvas” that triggers such differing
behaviors, such as rendering an emoji or using many distinct letters
in a string (for example, the open-source fingerprinting library Fin-
gerprintJS uses the pangram Cwm fjordbank gly) [19]. Among all
browser fingerprinting methods, canvas fingerprinting generates
some of the highest entropy, proving its efficacy in uniquely identi-
fying users [23, 30]. Indeed, several recent studies have also found
the HTML canvas to be a highly popular fingerprinting surface
among fingerprinters the wild [32, 39].

To this end, several anti-fingerprinting mechanisms have been
developed to limited success. For example, browsers can fully mit-
igate canvas fingerprinting by blocking all Canvas API accesses.
The Tor browser uses this approach, but at the cost of significantly
degrading the browsing experience. Another method is to add ran-
dom noise to the pixel data returned from Canvas API calls. Un-
less carefully implemented, though, attackers can circumvent the
mitigation [37]. Finally, a frequently adopted defense blocks Web
requests to domains serving scripts known to be performing can-
vas fingerprinting, such as Firefox’s Disconnect list [13]. However,
such blocklists rely on the assumption that fingerprinters do not
try to obfuscate their origins (e.g., front their script as first-party).
As the adoption of blocklists increases, though, fingerprinters are
increasingly motivated to obfuscate their origins.

Large-scale studies of the prevalence of canvas fingerprinting on
the Web show that it is being frequently adopted for both tracking
and security purposes. In 2014, Acar et al. showed that 5.5% of
the Alexa top 100k sites used canvas fingerprinting scripts on their
homepage, with over 95% of the scripts belonging to a singular (now
defunct) advertising company, addthis.com [1]. A 2016 study found
that 1.6% of the top 1 million sites used canvas fingerprinting, with
a much greater diversity of domains serving the script (with 98.2%
of scripts being third-party). The authors noted that the ad industry
seemed to be shifting away from canvas fingerprinting and found
an increase in fraud detection companies (e.g., doubleverify.com)
performing canvas fingerprinting [14]. Corroborating this shift
to security use-cases, several more recent studies have identified
security-motivated browser fingerprinting in the wild [3, 9, 38, 39].

Identifying fingerprinting intent is difficult, yet it remains a critical
problem for answering questions of regulatory compliance [34].

While there have been several recent measurement studies on
browser fingerprinting [28, 39], the most recent large-scale study
to measure canvas fingerprinting in isolation is Englehardt et al.’s
2016 study. Our work presents an updated measurement of canvas
fingerprinting on theWeb, withmeasurement techniques that better
capture the nuances in today’s landscape of browser fingerprinting.

3 Methodology

To study the operation and operators of canvas fingerprinting on
the Web today, we visited both popular and random sites, recorded
their Canvas API-related activity, and identified generated canvases
used for fingerprinting.

To capture behavior from popular, well-provisioned sites, we
visited the top-level page of the top 20k sites on the May 2025
Tranco rankings [31]. To also capture behavior from a diverse set of
sites, we visited the top-level pages of a random sample of 20k “tail”
sites ranked between 20k+1 and 1m on the same Tranco list (the
most popular random site had rank 20,025, and the least popular
997,854).

The Canvas API provides a mechanism to extract the result of a
series of Canvas API calls (i.e., a generated canvas) as a Base64 en-
coded string using the toDataURL method of HTMLCanvasElement.
In our analysis of canvas fingerprinting, we focused on detecting
and recording the return value of canvas extractions precisely be-
cause it captures the result of all preceding Canvas API calls.

3.1 Crawler

To record Canvas API calls on a page, we modified DuckDuckGo’s
Tracker Radar Collector [22], a Puppeteer-based Web crawler. We
added functionality that intercepted and recorded the arguments,
return value, script source URL, and timestamp of API calls and
property accesses to the interfaces CanvasRenderingContext2D
and HTMLCanvasElement.

The crawler handles common anti-bot detection mechanisms,
simulates basic user behavior by scrolling the page up and down
and then waiting five seconds, and uses the autoconsent library [21]
to opt-in to common consent banners. We performed the crawls in
May 2025 using a UCSD IP address.

By definition, canvases used for fingerprinting depend on the
hardware and software used to render to the canvas. As a result, we
used a single Intel machine running Ubuntu 22.04.2 LTS to crawl the
sites and record the canvases generated. To validate that identical
canvases across sites are not spurious, we performed a second crawl
of the same sites using a laptop with Apple’s M1 chip. While the
two machines rendered a site’s canvases differently, the behavior
across sites was the same: all the sites with identical canvases in
the Intel crawl also had identical canvases in the M1 crawl.

3.2 Detecting Canvas Fingerprinting

While we recorded all canvas image extractions (e.g., toDataURL
calls), not all generated canvases are used for fingerprinting. For
example, Web-based image manipulation tools allow the user to
extract the completed image as a data URL. However, such use
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cases require explicit user action which our crawler does not per-
form. Other benign use cases can be related to webp and emoji
compatibility checking [24].

Adapting the heuristics outlined in [14], we filtered extracted can-
vases according to three criteria. We excluded canvases extracted
in a lossy compression format such as JPEG or webp; compres-
sion loses the subtle differences required to perform fingerprinting,
and excluding webp excludes compatibility checks for it. We also
excluded small canvases (smaller than 16×16 pixels); these have
insufficient complexity to support effective canvas fingerprinting,
and also conveniently excluded emoji compatibility tests. Lastly, we
excluded canvases generated by scripts that also invoke methods
associated with animation (save, restore, etc.).

After applying these filters, 83% of all extracted canvases from the
popular and tail sites were fingerprintable. We manually inspected
a random sample of 200 canvases excluded by the above heuristics
and all had a benign use case. We provide examples of canvases we
excluded (and the sites they appear on) in Appendix A.2. We also
manually inspected a random sample of 300 unique fingerprintable
canvases. We found only two false positives, and these canvases
each appear only on a single domain (i.e., their existence does
not affect the results of our grouping analysis). We use this set of
fingerprintable canvases in our subsequent analyses.

Limitations. Our crawls only focused on the homepage of each
domain and did not follow inner links, which may have different
privacy properties [4, 8, 44]. As a result, our methodology will miss
instances of fingerprinting on inner pages (e.g., login pages) and
hence our prevalence results represent a lower bound on canvas
fingerprinting. Furthermore, while our crawler can overcome some
common bot detection mechanisms, it is possible that sites still rec-
ognize our requests as automated and modify their fingerprinting
behavior. Finally, fingerprinting behavior on a page may be trig-
gered from a specific user action (e.g., logging in), but replicating
this behavior is difficult to automate at scale and we accept that we
will miss some instances of canvas fingerprinting.

4 Canvas Fingerprinting Usage

Using the canvases extracted from crawling both popular and tail
sites, we characterize the prevalence of canvas fingerprinting on
the Web today. Based on the particular canvases used, we are able
to identify the footprint specific fingerprint services have across
the sites in our data sets and the inferred intent of those services.

4.1 Prevalence

Our results report a modest increase of browser fingerprinting over
the past decade. Of the 16,276 popular sites crawled successfully,
2,067 (12.7%) of them extracted at least one fingerprintable canvas.
Fingerprinting is slightly less prevalent among tail sites. Of the
17,260 tail sites that crawled successfully, 1,715 (9.9%) of them ex-
tracted at least one canvas. These results are in contrast to the 5.5%
of the top 100k sites reported by Acar et al. in 2014 [1]. Furthermore,
a 2016 study by Englehardt and Narayanan [14] found that only
1.6% of the top 1 million sites performed canvas fingerprinting,
but the effect of including more less-popular sites is unclear. Our
findings more closely match more recent studies: a 2021 study by
Iqbal et al. [28] found 10.18% of sites perform general fingerprinting

Shopify Test Canvas

Figure 1: Number of sites using the top 50 most-frequently

encountered test canvases across the top 20k sites. The orange

bars shows the frequency of the test canvas appearing on a

tail 20k site. The outlier orange bar represents Shopify’s test

canvas.

techniques.1 Most recently in 2024, Senol et al. [39] found that 8.9%
of homepages (from the CrUX top 100k [10]) performed general
fingerprinting, while almost all (93.1%) of these sites also engaged
in canvas fingerprinting.

At a site granularity, our crawler found on average 3.31 finger-
printable canvases per site (with a max of 60 andmedian of 2). There
are multiple reasons why a site may render multiple fingerprintable
test canvases. For instance, increasing the number of test canvases
could theoretically increase entropy by testing additional distin-
guishing characteristics of GPUs. Rendering multiple canvases can
also detect browser evasion mechanisms (Section 5.3).

4.2 Reach

To capture the reach of particular fingerprinting services, we group
together sites that generate identical test canvases. Since finger-
printing algorithms are deterministic and our crawler visited all of
the sites using the same browser and machine, every site that uses
a particular fingerprinting script will have exactly the same output
from the toDataURL method of HTMLCanvasElement. In theory, a
single set of test canvases could be universally used across all sites.
However, in practice the diversity among canvas fingerprinting
scripts is relatively high. Popular sites generated a total of 504
unique fingerprinting canvases, and tail sites generated 288.

Sharing of canvases across sites is a long-tailed distribution.
Figure 1 shows the head of this distribution: for the 50most common
test canvases in the top 20k sites, it shows the number of popular
sites (blue) and tail sites (orange) a particular canvas appears on. For
example, the most frequently encountered canvas among popular
sites appeared on 483 of them (3% of the popular sites crawled
successfully).

The six most-frequent canvases account for much of the shar-
ing on both popular and tail sites, accounting for 70.1% of the top
20k sites generating a test canvas and 47.1% of tail sites. There

1These techniques include but are not exclusively canvas fingerprinting. Concurrent
studies have found that the vast majority of sites performing general fingerprinting
also engage in canvas fingerprinting [32].
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is, however, one noticeable outlier among the tail sites: the most
frequently used test canvas among tail sites (used by 454 tail sites),
only appears on 32 of the top 20k sites. Upon inspection, this canvas
fingerprint is used for Shopify storefront “performance” monitor-
ing [40]. This difference in prevalence can be explained by Shopify
storefronts being far more common among less popular sites.

Overlap of test canvases between the tail and top sites. To
a significant extent, tail sites and popular sites are using similar test
canvases: 91.4% of tail sites that perform canvas fingerprinting gen-
erated a canvas that was also used by a popular site. Furthermore,
there were no significant groups of tail sites that share a test canvas
not seen in the popular sites: the largest group of tail-only test
canvases appeared on 15 tail sites, and the next-largest appeared
on only 3 sites.

Implication on cross-site tracking and fingerprinter reach

across sites. In practice, not a single organization owns all scripts
that perform canvas fingerprinting across all sites. Thus, the groups
of sites that render the same set of test canvases provide an upper
bound on the reach of any particular organization. The measured
reach is an upper bound because our methodology assumes that
different organizations will render unique test canvases (which is
not always the case). However, to attribute users across sites, at a
minimum the test canvas must be the same for those sites.

When compared to a 2016 study that found Google had track-
ers embedded on over 42% of all visited pages in Germany [45],
the scope of cross-site tracking currently feasible through canvas
fingerprinting is small: a reach of at most of 3% of the top 20k sites.

4.3 Attribution

We can use the diversity of test canvases being rendered to analyze
the footprint specific fingerprint services have across the Web.
Many fingerprinting services render a set of canvases distinct from
other fingerprinters, making identification straightforward. There
are also a few cases where a set of test canvases is used by several
different entities (e.g., FingerprintJS), requiring more care.

Treating unique canvases generated by a specific fingerprinter as
a fingerprint itself, we can use our sample of popular and tail sites
to gauge their relative use. We gather the ground truth of the test
canvases used by each fingerprinting service as follows: If a demo
of the service was publicly available, we crawled the demo page
and recorded the test canvases used. Otherwise, we crawled sites of
customers of the fingerprinting service and recorded the test can-
vases used. We determined customers of commercial fingerprinting
services through a combination of identifying customers on the
service’s Web site and pattern matching on the fingerprinting script
source URL. We provide additional details in Appendix A.3.

We repeated the process for twelve prominent fingerprinting ser-
vices that account for 73% of popular and 71% of tail sites that gener-
ate fingerprinting test canvases, as shown in Table 1. Note that some
sites may use multiple fingerprinting services. We created an initial
list of fingerprinting services by searching for commercial finger-
printing services advertised for security and marketing/attribution,
and adding popular vendors identified by prior work (e.g., [28, 39]).
To improve coverage of the remaining commonly-appearing test
canvases, we also manually inspected script source code.

Service Top 20k Tail 20k

Akamai 485 (23%) 205 (12%)
FingerprintJS 462 (22%) 298 (17%)
mail.ru 242 (12%) 173 (10%)
FingerprintJS (legacy) 179 (9%) 90 (5%)
Imperva* 49 (2%) 13 (1%)
AWS Firewall 48 (2%) 14 (1%)
InsurAds 40 (2%) 1 (0%)
Signifyd 39 (2%) 18 (1%)
PerimeterX 35 (1%) 2 (0%)
Sift Science 31 (1%) 8 (0%)
Shopify 32 (2%) 457 (27%)
Adscore 25 (1%) 30 (2%)
GeeTest 1 (0%) 0 (0%)
Total Sites 1,513 (73%) 1,222 (71%)

Table 1: Number of sites linked to each fingerprinting ven-

dor. Bold services are associated with security applications.

*Imperva was identified based on script URL.

4.3.1 Highest Reach. These vendors have the potential to track
users across the largest number of sites.

Akamai has the greatest reach of any one fingerprinting service.
Its unique test canvas was generated on 485 (23%) popular sites and
205 (12%) tail sites that engage in canvas fingerprinting. As one
of the largest hosting services, Akamai estimates it serves 15–30%
of global Web traffic [2]. The test canvas we observe is associated
with Akamai’s bot detection service, giving Akamai potential user
visibility across sites spanning a wide range of sites and markets
(from shopping to news, banking, etc.).

FingerprintJS is a unique case as they control both a highly pop-
ular open-source browser fingerprinting library and offer a (paid)
commercial fingerprinting service [18]. Both the open-source and
commercial services render the same set of test canvases. However,
we can distinguish between open-source and commercial customers
by the URLs for the scripts and the script content.2 In all, 462 (22%)
popular sites and 298 (17%) tail sites that perform canvas finger-
printing use the FingerprintJS set of test canvases. Of these, only
23 top sites and 10 tail sites use the paid commercial service. While
most of the use cases advertised for the commercial service are
targeted towards improving security (e.g., account sharing preven-
tion), FingerprintJS commercial has the potential to be mixed-use:
its dashboard exposes the fingerprint identifier to the customer, and
the customer is free to use that identifier as they wish. Furthermore,
their site advertises providing “personalization to anonymous users”
as a potential use case of their service [16].

Interestingly, many commercial advertisers and analytics com-
panies utilize the open-source version of FingerprintJS to perform
browser fingerprinting: among scripts rendering the FingerprintJS
set of test canvases, we see ones belonging to advertising companies
AIdata (40 top sites, 10 tail), adskeeper (10 top, 6 tail), trafficjunky
(7 top, 1 tail) and MGID (23 top, 17 tail), and Russian analytics
company acint.net (18 top, 29 tail). Further, an additional 179 top

2The commercial version uses additional fingerprint surfaces (e.g., the mathML library)
that the open-source version does not use.
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and 90 tail sites use a test canvas associated with an older (∼2020)
version of FingerprintJS. Updates to a single fingerprinting vendor’s
script can lead to changes in the way the test canvas is rendered,
potentially breaking re-identification.

mail.ru has broad reach across .ru domains. In our sample of
sites, the mail.ru test canvas set appeared on 242 popular sites
and 173 tail sites. These sites encompass one-third of all .ru do-
mains among the top 20k sites, showing significant potential for
re-identifying users across .ru domains.

InsurAds provides ad analytics data to customers and uses
browser fingerprinting to generate “real-time unique-user attention
optimization” [27]. However, their reach is limited across sites.

4.3.2 Security Applications. We identified a diversity of vendors
providing security applications performing canvas fingerprinting
in our dataset. Sift Science and Signfyd provide fraud detection,
Adscore focuses on ad fraud, and PerimeterX and the AWS Ap-

plication Firewall are bot detection services. While we were able
to identify an assortment of fingerprinting vendors for security
applications, their prevalence on the Web is overshadowed by Fin-
gerprintJS and mail.ru, and they have a limited reach across sites.

Imperva is another special case. Although it also uses canvas
fingerprinting for bot detection, it employs a unique test canvas
for each site it is deployed on. As a result, Imperva fundamentally
does not have the ability to track users across sites using canvas
fingerprinting. While we were unable to group canvases to identify
sites using Imperva’s services, we instead were able to identify their
customer sites by pattern matching the script URL that generates
their test canvas (Appendix A.4).

5 Tracking, Advertising, and Evasion

Previously we identified fingerprinting services and categorized
them based upon how they advertise their services. This approach
highlights positive uses of fingerprinting, in particular commercial
fingerprinting services that advertise various security uses (e.g.,
detecting bots, streamlining authentication, etc.). However, browser
fingerprinting is well known for privacy-sensitive purposes, such
as tracking and advertising; indeed, a recent study [33] found early
evidence of its use to influence advertisement bids. In this section
we use blocklists to characterize the use of canvas fingerprinting
for tracking and advertising, and then explore how fingerprinters
try to evade ad blockers and browser defenses.

5.1 Tracking and Advertising

To provide a first glance at fingerprinting scripts associated with
known privacy-sensitive Web resources, we turn to popular crowd-
sourced anti-advertising and anti-tracking blocklists.We check for a
script’s inclusion in three such lists: EasyList [11], EasyPrivacy [12],
and Disconnect [13].3 For EasyList and EasyPrivacy, we check if
any of their rules apply to the URL of the script rendering a test
canvas using adblockparser [29], and do not consider the dynamic
context of the script (as dynamic rules are often in place in such
lists to prevent breaking sites). We configure adblockparser to use
the resource type script as we focus on analyzing fingerprinting

3EasyList targets advertising content, and EasyPrivacy and Disconnect target trackers.

scripts. The Disconnect list is domain-based, so we simply check if
the domain of the script’s URL is included in the list.

Our results suggest that many fingerprinting scripts are per-
ceived to be privacy-sensitive (at least in the context of crowd-
sourced blocklists). Nearly half (45%) of test canvases in the top 20k
sites and over one-third (37%) in the tail 20k sites are generated
by a script that has been included in one of the three lists. Indeed,
15% of canvases are generated by a script that matches all three
blocklists, indicating clear tracking or advertising intent (Appen-
dix A.4 has a full breakdown). However, as we show in the following
section these numbers represent an upper bound on the number of
privacy-sensitive fingerprinting scripts blocked in practice.

5.2 Evading Blocklists

While nearly half of canvas fingerprinting scripts have been added
to a crowd-sourced blocklist, indicating that a significant amount of
canvas fingerprinting is indeed coming from privacy-sensitive Web
resources, statically-applied blocklist rules do not tell the complete
story. These high inclusion rates, combined with the use of these
blocklists by ad blockers with hundreds of millions of users, gives
fingerprinters strong incentive to evade detection.

To explore the impact of such evasions, we revisited the top 20k
and tail 20k sites with our crawler twice more, with two differ-
ent popular ad blocker extensions installed: AdblockPlus [15] and
UBlock Origin [26], both of which use EasyList’s rules. Using this
methodology we can determine which canvases are not rendered
and extracted as a result of being blocked by one of these extensions.
Revealingly, under both crawls with ad blockers, the number of test
canvases generated, and the number of sites that generate at least
one test canvas, only decreased by about 5% (Table 2).

There are several reasons for this significant difference in effec-
tiveness in practice. First, due to the context in which the blocklist’s
rules are applied, ad blockers in practice miss many canvas fin-
gerprinting scripts, whether from poor rule design4 or from their
precautions to avoid breaking site functionality.

Next, ad blockers commonly make exceptions for content served
first-party. Despite perceptions that most tracking is done through
third parties — and thus their Web resources are served third-party
— 49% of the top 20k and 52% of the tail 20k sites engaging in canvas
fingerprinting have at least one test canvas rendered by a script that
is served first-party, falling under this exception.5 The prevalence
of first-party use suggests that fingerprinters are benefiting from,
if not actively exploiting, such first-party exceptions.

Indeed, fingerprinting services actively encourage their cus-
tomers to take advantage of such first-party exceptions to ensure
their fingerprinting scripts are not blocked. By analyzing the docu-
mentation of the services we identified in Section 4.3, we discovered
several methods commercial fingerprinters are actively using to
mask their origins. The most popular in our data is bundling the
fingerprinting library into the site’s first-party JavaScript (common
in single-page applications), a practice that circumvents all URL-
or DNS-based fingerprinting detection techniques. More advanced

4Our results are consistent with a 2020 study that found that up to 90% of EasyList’s
rules provide no benefit in real browsing scenarios [41]. See Appendix A.6 for an
example of such a rule that fails in practice.
5For example, Akamai’s script is missed by ad blockers due to this first-party exception,
even though EasyList includes a rule matching Akamai’s fingerprinting script’s URL.
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# Test Canvases # Sites

Top 20k Tail 20k Top 20k Tail 20k
Control 6,037 4,422 2,067 1,715
Adblock Plus 5,834 4,228 1,948 1,656
UBlock Origin 5,776 4,175 1,976 1,651

Table 2: Using ad blockers only slightly reduces the number

of test canvases generated and the number of sites that gen-

erate at least one test canvas.

techniques include CNAME cloaking, where fingerprinters use
CNAME records to make their third-party scripts appear as if they
are being served from the first-party domain [7]. Another option
is subdomain routing, where services instruct their customers
to use subdomains of their site to serve the fingerprinting scripts:
9.5% of the top 20k and 2.1% of the tail 20k sites performing canvas
fingerprinting have at least one test canvas rendered by a script
served by a subdomain of the site. Finally, fingerprinters often use
popular CDNs to serve their scripts.6 We found 2.1% of the top and
1.9% of the tail 20k sites performing canvas fingerprinting to have
at least one test canvas served through a popular CDN, providing a
lower bound on the number of sites using this technique (Appen-
dix A.5 lists the CDNs we considered). Since CDNs are widely used
for legitimate purposes, ad blockers avoid blocking them.

In summary, blocklist-based defenses are ineffective for a large
fraction of fingerprinting scripts, and the domain that a fingerprint-
ing script is served from is no longer a reliable method to identify
fingerprinting vendors (as previously done in [1, 14, 28]). Both fin-
gerprinters for security and tracking commonly mask their origins,
making it increasingly difficult to disentangle fingerprinting intent.

5.3 Evading Browsers

Finally, in addition to using first-party exceptions to avoid ad block-
ers, fingerprinters also try to evade common browser fingerprinting
mitigations. In particular, fingerprinters have developed relatively
simple methods to detect and bypass canvas randomization tech-
niques. Canvas randomization thwarts fingerprinting by inject-
ing random noise into the canvas rendering process, and several
browsers [36, 42] and privacy tools [46] use it.

In turn, fingerprinters have learned to detect canvas randomiza-
tion using multiple renderings: fingerprinting scripts render the
same canvas multiple times and compare the results. If the results
are inconsistent, they infer the presence of canvas randomization7
and adjust their fingerprinting strategy accordingly. Appendix A.7
provides pseudo-code for performing this check.

Across all the sites that perform canvas fingerprinting we visited,
nearly half of them perform this canvas inconsistency check: 45% of
them have at least one test canvas that was generated and extracted
twice. Indeed, the most popular open-source fingerprinting library
performs this inconsistency check, and disregards the canvas as
part of the full browser fingerprint if it finds a discrepancy [20].
Commercial fingerprinters can also adapt their re-identification
6For example, the commercial version of FingerprintJS offers their services routed
through a Cloudflare worker [17].
7Note that this detection technique only works if different noise is added to each canvas
rendering, rather than persistent noise added to all renderings across a given browsing
session (e.g., as done by Firefox) [36].

algorithms based on the knowledge that a user may be using such
privacy-enhancing features [6], and usage of canvas randomization
could also be a fingerprintable signal itself.

6 Conclusion

Browser fingerprinting is a powerful technique because it is covert
and involuntary: it is not part of any standard protocol and requires
no explicit consent from the user. As a result, it may not be clear
when such fingerprinting is taking place and thus, how prevalent
the practice is.

Our work helps address this question by exploiting implemen-
tation artifacts in canvas fingerprinting, a widely used and highly
discriminating browser fingerprinting technique. We have estab-
lished that the precise choice of test canvas is a simple feature that
can not only identify if a site is using canvas fingerprinting, but
also which particular fingerprinting service they are employing.
We found that canvas fingerprinting is moderately widespread:
between 10–13% of sites employ this technique, dominated by a
few major players. Furthermore, any changes in the exact series of
Canvas API calls used to render a test canvas (e.g., due to updates
to fingerprinting scripts, or changes to the Canvas API itself) can
impact user re-identification over time.

However, fingerprinting can be used for a variety of purposes.
At one extreme, it may be focused on user tracking (e.g., cross-site
re-identification), while at the other, it may be used for anti-fraud
(e.g., bot identification or same-site user re-identification on login
pages). Distinguishing between these two can be challenging since
intent and use are not readily apparent. However, the distinction
is critical to our normative understanding of the practice as well
as for questions of regulatory compliance (e.g., under the GDPR
fingerprinting use associated with marketing/attribution purposes
requires user consent, while security purposes do not [43]). We
make progress on this question via two proxies: the public rep-
resentation of companies (since we are able to tie canvases back
to their services) and the presence of the domains serving such
canvases on privacy blocklists (e.g., as used by ad blockers). We find
that the use of fingerprinting services clearly associated with secu-
rity represent the minority use case (and a small minority among
less popular sites) and that between 37% and 45% of sites serving
fingerprinting canvases are listed on privacy blocklists. Together,
these suggest that there remain reasons to be concerned about the
privacy implications of browser fingerprinting in practice.
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(a) lacounty.gov (12x12 pix) (b) betus.com.pa (5x5 pix)

Figure 2: Example small canvases excluded from our analysis:

a 12x12 pixel canvas extracted by lacounty.gov and a 5x5

pixel canvas extracted by betus.com.pa.

A Appendix

A.1 Ethics

We believe our work has very low ethical risk. Our study draws
from data that is publicly available on theWeb, and does not contain
any personal information.

A.2 Excluded Canvases

As discussed in Section 3.2, not all canvases a site extracts using
toDataURL are test canvases used for fingerprinting. Here we pro-
vide more details about the canvases that our heuristics exclude
as fingerprintable test canvases, including examples of excluded
canvases and the sites that use them.

WebP Compatibility Testing. Many sites (306 in the top 20k)
extract a 1x1 pixel or 300x150px (the HTMLcanvasElement’s de-
fault size) transparent WebP image using toDataURL. This use of
toDataURL is likely to test dynamically whether the user’s browser
has WebP support [5]. We exclude such canvases in our analysis as
they are not used for fingerprinting. Some examples of sites that we
found to perform WebP compatibility testing through the HTML
canvas are dailynews.com, smule.com, tinder.com, and nj.gov.

Small Canvases. After excluding non-png image types, we
also excluded small canvases under 16x16 pixels. An additional
216 of the top 20k sites included at least one such small canvas.
Figures 2(a) and 2(b) show (zoomed in) examples of such small
canvases excluded from our analysis. Typically, they are uniform
in color. While it is unclear what the exact purpose of extracting
such canvases are, they likely do not contain sufficient complexity
to perform canvas fingerprinting.

Overall, there were 155 of the top 20k sites and 138 of the tail 20k
sites that were fully excluded from our analysis (i.e., they did not
render a fingerprintable canvas in addition to an excluded canvas).

A.3 Identifying Fingerprinting Vendors

As discussed in Section 4.3, we used two methods for attributing
test canvases to fingerprinting services. Table 3 shows how we
identified the test canvases a particular fingerprinting vendor uses
across its customer sites, in order of precedence (e.g., a demo is the
most reliable indicator).

Demo indicates the service provided a free or public demo of
their fingerprinting product. We crawled the demo site to extract
the test canvases used by such a service.

Service Demo Customer Script Pattern

Akamai ✓ /akam/
FingerprintJS ✓ ✓ fpnpmcdn.net
mail.ru privacy-cs.mail.ru
FingerprintJS (legacy) ✓ fpnpmcdn.net
Imperva* (See caption)
AWS Firewall awswaf.com
InsurAds ✓ insurads.com
Signifyd ✓ signifyd.com
PerimeterX ✓ px-cloud.net
Sift Science ✓ sift.com
Shopify ✓ shopifycloud
Adscore ✓ adsco.re
GeeTest ✓ geetest.com

Table 3: How we attributed the test canvases fingerprinting

vendors use. For Imperva, we used the following regular

expression: https?://(?:www\.)?[^/]+/([A-Za-z\-]+)

Known Customer indicates that we crawled sites that are
known customers (e.g., advertised on the service’s Web site) of a
particular service. For these sites, we always confirmed our crawls
with the Script Pattern heuristic (e.g., in case the service offers
several products, and only one of which use canvas fingerprinting).

Finally, we provide a Script Pattern associated with each finger-
printing provider. To identify services through the script pattern, we
manually inspected the URLs of scripts rendering an identical can-
vas. Then, to attribute the script pattern to a particular vendor, we
looked for copyright statements within the scripts and/or searched
the potential vendors’ documentation for the specific script pattern.
We note that in Table 3, we only provide one example of a pattern
found in a particular vendor’s fingerprinting script, and not all sites
using the vendor’s script will have a script with such a pattern
(hence the need for improving coverage through grouping together
sites using the generated canvas itself).

Blocklist Top 20k Tail 20k

EasyList 1,869 (31%) 1,179 (27%)
EasyPrivacy 2,157 (36%) 1,340 (30%)
Disconnect 1,251 (21%) 833 (19%)
Any 2,696 (45%) 1,635 (37%)
All 942 (16%) 670 (15%)

Table 4: Number of test canvases generated by scripts in-

cluded in popular crowdsourced anti-advertising and track-

ing blocklists.

A.4 Scripts Covered Under Crowdsourced

Blocklists

Table 4 shows how many test canvases were generated by scripts
that were included in EasyList, EasyPrivacy, and the Disconnect
Tracker Protection List amongst the top 20k and tail 20k sites. A
significant number of scripts are included in all three crowdsourced
blocklists, indicating strong tracking and/or advertising intent.
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A.5 Popular CDN List

Section 5.2 noted that fingerprinting services can use popular CDNs
to serve fingerprinting scripts to bypass blocklists. We used the
following domains to identify scripts loaded from popular CDNs:

akamai.net cloudflare.com
azureedge.net cloudfront.net
b-cdn.net fastly.net
bootstrapcdn.com gstatic.com
cdn.jsdelivr.net googleusercontent.com
cdnjs.cloudflare.com googleapis.com

A.6 Easylist Rule Design

As discussed in Section 5.2, in practice ad blockers are much less
effective at blocking fingerprinting scripts due to the context in
which the rules are applied. For example, advertiser mgid.com’s
canvas fingerprinting script is not blocked in practice even though
EasyList has a rule for mgid.com:

||mgid.com^$document

The latter part of the rule (“$document”) is a modifier that specifies
the rule should apply to documents (i.e., the HTML site content)

and not to other site resources like scripts [25]. In all, at the time of
our analysis EasyList had 828 rules that use the same modifier.

A.7 Canvas Randomization Detection

The following pseudo-code shows how a fingerprinter might detect
and circumvent the addition of random noise to canvas renderings
(e.g., as done by [46]).

Algorithm 1: Canvas Randomization Detection
Render one test canvas, store as Canvas1;
Generate the same canvas again, store as Canvas2;
if Canvas1 ≠ Canvas2 then

// The browser adds random noise – canvas

fingerprint is unstable
Disregard canvas component of the browser fingerprint;

else

// The canvas is stable, proceed with

fingerprinting

Continue with fingerprinting logic;
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